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ABSTRACT 

We show t h a t  t he  represen ta t ion  variety for the  surface group in 

character is t ic  zero is (absolutely)  irreducible and  ra t ional  over Q. 

In troduct ion  

Let F be a finitely generated group. For any algebraic group G the set R(F, G) 

of all representations ( = homomorphisms) p: F ~ G is known to have a natural 

structure of an algebraic variety, and endowed with this structure is called the  

variety representa t ions  of F in G (cf. [Lu-M], [PI-R]). In tl~e case G = GLn 

which is analyzed by the classical representation theory, R(F, GLn) is denoted 

simply by P~(F) and called the  variety of n-dimensional  representa t ions  

of F. Since R~(F) is defined by the equations arising from the relations for the 

generators of F, a special role in this theory is played by the one-relator groups 

r =  ( x l , . . . , x , l  r =  1). 
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The methods of this paper allow one to consider in full the case: n _> 4, r = 

r l [Xn-3 ,  Xn-2] [Xn-1, Xn] where [x, y] = x y x - l y  -1 is the commutator of x and y, 

and r l  is an arbitrary word in the derived subgroup of the free group 

F ( X l , . . . , x n _ 4 ) .  The most notable groups of this kind are the fundamental 

groups Fg of compact orientable surfaces of genus g > 1, and that is why we 

formulate our results (which remain valid also for g = 1) for these groups. So, let 

F 9 (g > 1) be the group with 2g generators Xl, Yl , . . . ,  xg, yg and a single defining 

relation 

[Xl, Y l ] ' " '  [Xg, yg] = 1. 

Then a description of R~(Fg) for the ground field of characteristic 0 is given by 

THEOREM 1: l:t,~(Fg) is an (absolutely) irreducible Q-rational variety of  

dimension 
J" ( 2 g - 1 ) n  2 + 1  i f g >  1, 

dimRn(Fg)  
n 2 + n ifg = 1. 

Informally speaking, Theorem 1 means that "almost all" n-dimensional repre- 

sentations of F 9 can be parameterized by some rational functions thus yielding a 

nice description of the totality of representations of Fg. However to complete in 

a sense the representation theory for Fg one should supplement the latter with a 

description of the equivalence classes of representations. In geometric terms this 

amounts to the analysis of the corresponding variety Xn (Fg) of n - d i m e n s i o n a l  

c h a r a c t e r s .  Recall that Xn(F) can be defined as a categorical quotient of R~(F) 

modulo the action of GL~ by conjugation and that the points of X~(F) are in 

one-to-one correspondence with the equivalence classes of fully reducible repre- 

sentations of F [Lu-M]. (Another realization of X~(F) is given in [P1].) 

THEOREM 2: The character variety Xn(Fg) is irreducible and Q-unirational, of  

dimension ( 2 g -  2)n 2 + 2 (resp., 2n) for g > 1 (resp., g = 1). Moreover, X~(F~) 

is Q-rational i f  g > 1 and n <_ 3. 

Unfortunately, not much more is known about rationality of the character 

variety even for the apparently simpler case of the free group F = Fro, 

namely, Xn(Fm) for m > 1 is known to be rational only for n _< 4 (cf. [F1]., [F2] 

and a survey article [LeB]) though it is expected to be rational for n arbitrary 

(conjecture due to Procesi). Note that a bit weaker property than rationality, 
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that of stable rationality is known to hold for X~(Fm) for any n I 420 [B-LeB], 

however at the moment we do not have any analog of this result for Xn(Fg). 

The irreducibility of R~(Fg) in Theorem 1 easily implies that of R(Fg, SLn) 

(Theorem 3 in w and therefore the connectedness of Rn(Fg)c and R(Fg, SLn)c 

[Shl]. W. Goldman [Go] obtained this result for representations in SL2(C) as a 

by-product of his thorough analysis of the connected components of R(Fg, SL2)R. 

He conjectured the connectedness of R(Fg, G) for any simple simply connected 

complex Lie group G. This conjecture was recently proved by Jun Li [J]. How- 

ever the argument therein does not seem to imply irreducibility even in our case. 

On the other hand, in some cases you really need to know irreducibility rather 

than connectedness. For example, as communicated to us by A. Lubotzky, once 

we know irreducibility of X~(Fg), we can use the method developed in [Ba- 

Lu] to come up with a very fine approximation of the mapping class group 

( -- Out (Fg)). In particular, one can prove it is virtually residually torsion 

free nilpotent, and consequently, virtually p-residually finite. As a mat ter  of fact, 

since our approach allows to prove irreducibility of R~(F) for a lot of groups other 

than Fg, we can use [Ba-Lu] to analyze the existence of a similar approximation 

for some new outer automorphisms groups. 

Theorem 1 was initially obtained by the first two authors under two 

assumptions (cf. a short exposition in [R-Be]). To formulate these we need some 

notations. Let T(z)  for z E SL~ denote the Zariski closed subset of all y E GL~ 

such that y and zy have the same characteristic polynomial, and let W ( z )  = 

{(x,y) C GL~ x GL~[ [x,y] = z} be the corresponding commutator variety 

(clearly, T(z)  contains the projection of W ( z )  onto the second component). We 

assumed in [R-Be] that: 

(1) for all z in some Zariski open subset U C SL~ the variety T(z)  is irreducible; 

(2) for any x, y E GLn the coset of  x modulo the centralizer of  y contains a 

regular element. 

In [R-Be] we mentioned that both assumptions are valid for n _< 4, and 

besides, assumption (2) is valid for arbitrary n "generically" (cf. Proposition 2 

below). Subsequently, the third author proved the irreducibility of the "generic" 

commutator variety which is a bit weaker assertion than (1) but still allows one 

to prove the following statement crucial for the proof of Theorem 1. 

PROPOSITION 5: There exists a Q-defined Zariski open set U C SLn such that 

for any extension K / Q  and for any z E UK the commutator variety W ( z )  is an 
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(absolutely) irreducible K-rational variety of dimension (n 2 + 1). 

The third author also proved assumption (2) in full. (Note that  when this work 

was done D. Djokovi~ kindly sent us his preprint [D] in which he also proved this 

assertion.) 

It would be interesting to extend Theorem 1 to the representations of F 9 into 

other algebraic groups. Recently the first and the third authors proved that  

the variety R(Fg, SLn) is irreducible and Q-unirational (Theorem 3). The proof 

of irreducibility here actually does not differ from the case of the group GLn; 

however the proof of unirationality uses a new idea which we are going to explain 

now. If we are given two elements a, b E GLn,  and multiply a by an element of the 

centralizer of b or, symmetrically, multiply b by an element of the centralizer of a 

(i.e. perform a so-called standard transformation) we do not alter the commutator 

[a, b]. Now suppose one is given a, b, c, d E GLn (resp., SL,~) such that [a, b] -- 

[c, d], one may ask if it is possible to pass from (a, b) to (c, d) by a chain of 

standard transformations. We prove that this is indeed true "generically", i.e. 

for (a, b, c, d) in some Zariski open subset of (GLn) 4 (Theorem 4), and this fact 

allows us to prove the unirationality of the generic commutator variety in SL,~ 

and eventually of R(Fg, SLn). 

The main results of this paper were presented at the Norman-Minsk workshop 

"Representation Varieties and Platonov's Conjecture" organized by the Univer- 

sity of Oklahoma (Norman, Ok. USA, the NSF grant INT-9206790) whose hos- 

pitality is gratefully acknowledged. We are grateful to the participants of the 

workshop, especially to A. Magid and A. Lubotzky, for helpful discussions. 

1. S o m e  resul ts  o n  regular  e l e m e n t s  

Recall that  an element x of a reductive algebraic group G is called regu la r  if 

its centralizer ZG(X) has minimal possible dimension (which is always equal to 

the rank of G). It is well-known that  the set Greg of regular elements is Zariski 

open in G [Sp-St]. Henceforth we shall be working with regular elements only in 

the group G = GLn,  and therefore ZG(X) will be denoted simply as Z(x). One 

can easily check that  in this case an element x E G is regular if and only if in 

its Jordan normal form every eigenvalue corresponds to a single Jordan block. 

Note that the latter condition can be reformulated as follows: for any A in the 

algebraic closure of the field of definition, the rank of the matrix x-AE,~ is _> n - 1  

(E,~ is the unit matrix); in particular, a semisimple x E G is regular iff each of 
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its eigenvalues has multiplicity one. We need to know that regular elements can 

be found among the elements of a specific form. 

PROPOSITION 1: For a n y  x,  y �9 G L ~  the  set  x Z ( y )  contains  a regular  e lement .  

Proof." Replacing x and y by suitable conjugates we may (and we will) assume 

y to be a Jordan matrix, i.e. y = diag (Jk, ( a l ) , . . . ,  Jk. .  ( am) )  where 

J (a) = 

a 1 0 . . .  0 / 
0 a 1 . . .  0 
0 0 a . . .  0 

0 . . .  a 

is a Jordan block of order k, a, a l , . . . ,  am belong to the fixed algebraically closed 

field K. It is easy to check that the centralizer of J k ( a )  in the full matrix algebra 

Mk(K)  consists of all matrices of the form 

= 

\ 

a l  a 2  �9 �9 �9 a k  \ 

J 0 a 1 �9 �9 �9 a k - 1  

0 0 . . .  a l  

(ai �9 K) .  

Now let x~, x 1 . ,  x ~ ,  x m be algebraically independent over K and �9 " " ' k l  ~ . . . . .  ~ k ~  

C ( k l , . . . ,  km) = diag(Xkl (x~ , . . . ,  x~, ) , . . . ,  Xkm ( x ~ , . . . ,  xk'~ )). 

Then c = c ( k l , . . . ,  kin) is a non-degenerate matrix over the field 

L = K ( x ~  . x I . x m ,." , k l , . " , x ~ ,  .. , kin) 

commuting with y. Besides, since the set of regular elements is open in the Zariski 

K-topology it suffices to show that xc  -1  is regular�9 Thus, we need to prove that 

for any A in the algebraic closure L we have the following inequality for the ranks 

of matrices: 

rk(xc -1 - AEn) = rk(x - Ac) > n - 1. 

It turns out that  the latter fact is true for arbitrary x E M n ( K )  (even degenerate). 

LEMMA 1: L e t  x E M,~(K), c be as in t roduced  above.  T h e n  for a n y  A E L we 

have  rk(x - Ac) _> n - 1�9 
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Proof: Pu t  

Fn(k l , . . . , k m)  = { x -  AC(kl , . . . ,km)[  x e M n ( K ) ,  A E L}. 

We are going to  show by induction on n tha t  for any choice of k l , . . . ,  k,~ the rank 

of any element f rom F~(k l , . . . ,  k,~) is >_ n - 1. For n = 2 this is easily verified 

by direct computat ions .  Assume tha t  for some n > 2, there are some k l , . . . ,  km 

such tha t  kl + - . .  + k m  = n and the rank of b = x - Ac E F n ( k l , . - . , k m )  is 

str ict ly less than  n - 1. Let Xl (resp., bl) be the matr ix  obtained from x (resp., 

b) by  deleting the last row and the last column. Then  

bl - Xl - -  .~Cl 

�9 . , �9 X ~ where cl = d iag(Xk,(x~, ,  x ~ )  . . . .  , X k ~ - l ( x ~ , . .  , k~ - l ) ) .  Since rkbl  _< 

rkb  < n - 1, we have de tb l  = (detcl)(det(xlc-~ 1 - AE~_I))  = 0. Hence A is an 

eigenvalue of the mat r ix  xlc-[ 1, in particular,  A belongs to  the algebraic closure 

of the field L1 = K(x~, . . . ,xkm 1), i.e. A is independent of the last variable 

xk m .  Then  bl E F ~ - l ( k l , . . . ,  km - 1) (under the convention tha t  if k m =  1 we 

put  F ~ - l ( k l , . . . ,  km_l,O) = F ~ - l ( k l , . . . ,  kin-l)), and by inductive hypothesis  

rk bl _> n - 2. Consequently, rkb = rkbl  = n - 2. Moreover, if e l , . . .  , en  are the 

columns of b then a base of the vector subspace ( e l , . . . ,  e . )  C L"  generated over 

L by e l , . . . ,  en can be chosen from among e l , . . . ,  en-1 ,  i.e. the vector e,~ is in 

fact a linear combinat ion of the others. 

Now consider the project ion L"  ~ L n - l ,  v ~-~ ~, omit t ing the (n - k m  + 1)-th 

component .  We claim tha t  

(i) d i m < ~ l , . . . ,  ~,~) =- n - 2. 

Indeed, if x2 (resp., b2) is the matr ix  obtained from x (resp., b) by deleting the 

row and the column with the number  (n - k m +  1), then clearly 

b2 -- x2 - -  ~E1 

with the same cl as above, implying tha t  b2 E F n - l ( k l , . . . ,  k m -  1). Arguing 

as above we obta in  tha t  in our sett ing rk b = rk b2 = n - 2 yielding (1). Since 

e,~ is a linear combinat ion of e l , . . .  , en -1 ,  then ~ is a linear combinat ion of 

e l , - . .  , en -1 ,  so one can find a base e i l , . - .  ,ei~-~ of the space ( e l , . . - , e ~ >  such 

tha t  all i j ' s  are different from n. The corresponding vectors ei 1 . . . . .  ei~_ 2 are 
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linearly independent and therefore form a base of the space ( e l , . . . , en> .  

Consider a presentation 

(2) en -- j31ei 1 + . . - +  ~3n-2ei,_ 2, ~i E I,. 

We claim that  all ~i in (2) in fact belong to L1. Indeed, from (2) one obtains 

However all the coordinates of en, e~ l , ' . . ,  el ,-2 belong to L1, consequently all f~i 

belong to L1 too, as required. Now matching the (n - km + 1)-th coordinates in 

(2) and bearing in mind that  these coordinates.of all of the e h . . . .  , e~_ 2 are in 

/,1 we derive that  xkm E L1. The contradiction proves Proposition 1. | 

COROLLARY: Let z E SL,~, W ( z )  = {(x,y) E GL~ • GLn[ Ix, y] = z} be the 

corresponding commutator variety. Then any irreducible component W1 C W ( z )  

contains a point (x, y) such that both x and y are regular elements. 

Proof: Let (x l , y l )  E W1 be a point which does not belong to any other 

irreducible component of W(z) .  

The set C = (X lZ(y l ) , y l )  is irreducible (indeed, Z(y l )  is the Zariski open 

subset of ZM~ (Yl), the centralizer of Yl in the matrix algebra, which is the affine 

space) and contained in W(z), so it must lie entirely inside some irreducible 

component. However due to our choice of (Xl, Yl), this component cannot be 

other but W1, i.e. C C W1. Now, applying Proposition 1 and using irreducibility 

of Z(yl )  we can pick a regular element x E XlZ(y l )  such that (x, Yl) belongs to 

W1 but not to any other irreducible component of W(z) .  Repeating this argument 

we can find (x, y) E W1 with both x and y regular. | 

For the case of semisimple y and char K = 0 one can prove the following 

refinement of Proposition 1. 

PROPOSITION 2 ([R-Be]): Let cha rK  = O. I f  x, y E GLn and y is semisimple, 

then the set xZ(y )  contains a regular semisimple dement.  

Proof'. Conjugating y we may assume it to be diagonal, and then we have in fact 

to prove that  given x E GLn there exists a diagonal matrix d E D,~ such that the 

matrix xd has distinct eigenvalues. For a polynomial p(A ) = A n § a i A n-  1 + . . .  + an 

let An = A,~(a l , . . . ,  a,~) denote the resultant of the polynomials p(A) and p'(A) 
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which, up to the sign, coincides with the discriminant of p(A). We need the 

following lemma. 

L E M M A  2: 

(i) An a.=0 n-1 2 ---- ( - - 1 )  a n _ l A n - l ( a l , . . . , a n - 1 ) .  

(ii) F o r  n > k >_ 1 w e  h a v e  

A n  a k + l = a k + 2  = ' ' ' - ~ a ~ - l ~ O  i t x n k  n - k - l  "~ = 1,--1) a n z-k n 

f o r  s o m e  p o l y n o m i a l  7Xn in  a l ,  . . . , ak ,  an s u c h  t h a t  

s  oo=0 (-1)k(n n-k , -k+l  = - k )  a k A k ( a l , . . . , a k )  

(here w e  a s s u m e  that A 1 :---- 1). 

Proof." (i) It follows from the definition of the resultant that  

1 a 1 

n ( n -  1)al 

�9 �9 �9 a n - 1  

1 a 1 

�9 �9 �9 a n - 1  

n 

a n - 1  0 

( n -  1)al . . .  an-1 

n - - 1  
r o w s  

n 

r o w s  

The only non-zero entry in the last column of this determinant is an - i ,  so 

expanding it along the last column we get 

A n  an-~ 0 = a n - 1  

1 a 1 

n ( n -  1)al 

�9 �9 �9 a n - 1  

1 a l  

�9 �9 �9 a n - 1  

a n - 1  

n ( n - 1 ) a l  . . .  an-1 

n - - 1  

r o w s  

n - - 1  

r o w s  

Now, let us make the following transformations of the latter determinant: for 

each i = 0 , . . . ,  n - 2 we subtract the (i + 1)-th row from the (n + i)-th row. 

Then we get a determinant with the only non-zero element in the last column, 

this element in the position (n - 1, 2n - 2) and being equal to an-1. Expanding 
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this de te rminan t  along the last column we get An 

a n _ l ( - - 1 ) n - l a n _ l  

REPRESENTATION VARIETIES 

a l  a n -  1 

1 a l  
n -  1 ( n -  2)al  . . .  a n - 2  

n - 1  ( n - 2 ) a l  

n--1  2 : ( - 1 )  a n - l A n - l ( a l , . . . ,  a n - l ) ,  as required�9 

(ii) Again, by the  definition of the resul tant  

A n  ak+l='"~--an- l= 0 : 

a n - 1  

a n - 2  

37 

1 a l  . . .  ak 0 . . .  0 an 

n ( n -  1)al 
1 a 1 . . .  a k  0 . . .  0 a n  

�9 . .  (n - k )ak  

n ( n -  1)al  . . .  ( n -  k)ak 

( the size of the ma t r i x  is (n - 1) + n). Noticing tha t  this de t e rminan t  looks like 
* 0 

* a n E n - k - 1  and expanding  it along the last (n - k - 1) columns,  we obta in  
* 0 

A n  ak+l  . . . . . . .  _ 1 = 0  = ( - - 1 ) n ( n - k - 1 ) a n - k - l s  = ( - - 1 ) n k a n - k - l  ~kn 

with the obvious s Fur thermore ,  it is easy to see t ha t  

1 a 1 

n ( n -  1)al 

�9 . .  a k 

1 a 1 

�9 . .  ( u - k ) a k  

n (n - 1)al  

�9 . .  a k 

�9 .. ( n -  k)ak 

k 
rows 

n 

rOWS 
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This determinant is of the form I * 0 I �9 (n - -k )akEn_k  so s  
a,~ ~-O ~--- 

n - - ~ n - k  n - k  ~) ak 

1 a l  

n ( n -  1)al 

�9 . .  a k  

1 al 
... ( n -  k)ak 

n ( n -  1)al 

�9 . � 9  a k  

. . .  ( n - k ) a k  

k 
rows 

k 
rows 

In the latter determinant we make the following transformations: for each i = 

1 , . . . ,  k we subtract from the (k + i)-th row the i-th row multiplied by (n - k). 

Then we get 

a l  

(k - 1)al 

n a n  ~ O  

�9 . .  a k  

1 al 

�9 �9 �9 a k - - 1  

k (k -- 1)al 

( n -  k)n-ka'~-k k 

k 
rows 

�9 . .  a k  

rows 
�9 �9 �9 a k - 1  

Finally, expanding the obtained determinant along the last column we arrive at 

the required formula 

/~'~ a~=0 ( -1 )n (n  n-k n-k+1 : - -  k )  a k A k ( a l , . � 9 1 4 9  

Lemma 2 is proved�9 | 

For z E GLn  let fz(A) -- det(AEn - z) be the characteristic polynomial of z, 

f~(A) = A n +a l ( z )A  n-1 + . � 9  + a , ( z ) ,  and let An(z) = An(al(Z) , .  �9 �9 an(z)). For 

the proof of Proposition 2 it suffices to find d E Dn such that An (xd) r O. Let 

d l , . . . ,  dn be algebraically independent over K and let d = d i ag (d l , . . . ,  dn) be a 

"generic" diagonal matrix. We are going to show that A~(xd) as a polynomial 

in d l , . . . ,  dn is not identically zero�9 Let us proceed by induction on n. The case 

n = 2 can be easily handled by direct computations. Now suppose n > 2 and our 

assertion has been proved already for all k < n. Let Mjl ..... jo denote the principal 

minor of the matrix x located in rows and columns with the numbers j l , - . . ,  Js. 
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I t  is easy to see t ha t  the coefficients ai(x) of the characterist ic  po lynomia l  fx(~)  

are expressed as follows: 

Therefore,  

a,(x) = ( - 1 ) '  Z Mj, ..... i~ 
j~<.. .<j .  

ai(xd) = ( - 1 ) '  ~ dil . . . d j . M j ,  ..... jo. 
j l  <'"<js 

To begin with,  assume tha t  an- l ( xd )  ~ O. This means  tha t  not all principal  

minors  of order (n - 1) of x vanish, and in this case after  conjugat ing x by a 

sui table monomia l  ma t r ix  ( tha t  induces a pe rmu ta t i on  of the diagonal  entries of 

d) we m a y  (and we will) assume tha t  M1 ..... n-1 r 0. Let x '  denote  the ma t r ix  

obta ined  f rom x by deleting the n - th  row and the n - th  column (so tha t  M1 ..... n-1  

= det x ' ) .  Also put  d (1) = d i a g ( d l , . . . ,  dn-1,0),  d' = d i a g ( d l , . . . ,  dn-1) .  Then  as 

one can easily see we have 

ai(xd 0)) = ai(x'd') for i < n -  1, 

and 

an(xd (D) = O. 

Using (i) of L e m m a  2 we obta in  

An(xd)  d.=0 = An(xd(1)) = (-1)n-la'~-l(Xd(1))2A'~-l(xrdP)" 

By induction hypothesis ,  An_l(x~d ~) ~ O. On the other  hand,  

a n - l ( x d  (1 ) )=  ( - 1 ) n - l d l  " ' ' d n - l M 1  ..... n - l ~ O .  

Thus,  An(xd)  ~ 0, as desired. 

Now let an- l ( xd )  - O. If  al(xd)  . . . . .  an - l ( xd )  = O, then  f~:d(A) = 

�9 V ~ +an(xd)  has no mult iple  roots  implying An(xd)  ~ O. So, we m a y  assume tha t  

for some k, 1 < k < n - 1, we have 

ak+l(xd) . . . . .  an - l ( xd )  =- O, 

but  

o. 
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Then using notation introduced in part (ii) of Lemma 2 and putting ;Xn(xd) = 

s  an(xd)) we may write 

An(xd) = (-1)~ka,~(xd)'~-k-l s 

Since a,~(xd) = ( -1 )  ~ det(xd) ~ 0, it suffices to show that ~ ( x d )  ~ O. But by 

assumption qk(xd) ~ O, hence not all the principal minors of order k of x vanish, 

and just as above we may assume that M1 ..... k ~ 0. Let x"  be the matrix obtained 

from x by deleting rows and columns with the numbers k + 1 , . . . ,  n. Put  

d ( 2 ) = d i a g ( d l , . . . , d k , 0 , . . . , 0 ) ,  d"=diag(dl,. . . ,dk). 

Then it is easy to see that 

(a~(x "d") for i _< k, 
ai(xd(2)) = 0 for i > k. 

By virtue of Lemma 2 (ii) we have 

= ( -1 )k(n  - k)'~-kak(xd(2))n-k+lAk(x"d"). 

However, ak(xd (2)) = ( -1 )kd l  . . .dk  M1 ..... k ~ 0 and Ak(x"d") ~ 0 by the 

inductive hypothesis, hence ;X,~(xd) ~ O. Proposition 2 is proved. | 

Remark: As observed by V. P. Platonov, the analog of Proposition 1 for an 

arbitrary reductive group is false even if the group is simple and the element y 

is semisimple. 

2. C o m m u t a t o r  variet ies  in GLn 

First, we consider the case g = 1. Here F = (x, y] [x, y] = 1), i.e. F is a free 

abelian group on two generators. Then P~(F)  coincides with the variety C(2, n) 

of pairs of commuting matrices in GLn.  More generally, we define the variety 

C(p, n) of p-tuples of pairwise commuting (n • u)-matrices to be { ( x l , . . . ,  Xp) E 
(GLn)Pl x~xj = xjx~ for all i , j  = 1 , . . . , p} ,  and then C(p ,n)  = Rn(ZP). The 

irreducibility of C(2, n) was established by Motzkin and Taussky [Mo-Ta] (cf. 

also [G]), and afterwards this result has been generalized by Richardson [Hi] 

to the variety C(2, G) of commuting elements in an arbitrary reductive group 
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G.* For the sake of completeness we give a simple proof  of irreducibility (and 

rationality) of R n ( F )  based on the following elementary lemma which will also 

be used in the sequel. 

LEMMA 3: Let  U be an irreducible K-de f ined  algebraic variety�9 F ix  an integer 

n > 0 and consider a subvariety  X C U x A ~ defined by a s y s t e m  o f  linear 

equations: 

~-~ . f i j (u) t j  = gi(u), i = l , . . . , m ,  
j = l  

where f i j  (u), gi(u) �9 K[U] are regular functions and t l ,  . . . , tn are the coordinates 

F (u )  = 

in A n. P u t  

= 

f l l (U)  

f l(u) 

( f H ( u )  

fln(U) ), 

fm~(u) 
f,~(~) ~(u) ) 

and assume that  everywhere  on U we have r k F ( u )  = rk F (u )  = r for some 

constant  r. Then  X is irreducible and the field o f  rational funct ions K ( X )  is 

isomorphic to K ( U ) ( S l , . . . ,sn-~) for some algebraically independent  parameters  

8 1 ,  �9 �9 � 9  8 n - - r .  

Proof: Let m l ( u ) , . . . , m l ( u )  be all (r x r ) -minors  of F(u) .  Put  Ui = 

{u �9 U I m~(u) # O} ,Xi  -- { (u ,a)  E X l u e Ui} and I = {i I Ui # 0}. I t  

follows from Cramer ' s  Rule for linear systems and our assumptions tha t  for ev- 

ery i �9 I we have Xi "" U~ x A ~-~. In particular,  Xi  is an irreducible variety 

of dimension d = dim U + n - r. Since U is irreducible, for any i, j �9 I ,  the 

intersection Xi A Xj  is non-empty,  and therefore is, in fact, dense in bo th  X i  and 

X j .  Besides, X = Uie l  Xi implying, in particular,  tha t  d im X = d. Fix some 

i �9 I and let X ~ be an irreducible component  of X containing Xi. If  we assume 

tha t  X is reducible then for some j �9 I we shall have X j  (~ X ' .  Let X "  be a 

component  containing Xj .  Since d im X '  = dim Xi = d, Xi is dense in X q  For 

the same reason, X j  is dense in X ' .  Therefore, Xi  N X j  is dense in bo th  X '  and 

X " ,  forcing X '  = X ' .  The contradict ion proves the irreducibility of X.  Now if 

* The first author wishes to thank J. T. Stafford for pointing out to him references 
[G] and [Ri]. 
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we fix some i �9 I,  then K ( X )  = K ( X i )  = K(Ui  x A ~-~) = K ( U ~ ) ( s l , . . . ,  s,~_~) 

= K ( U ) ( s l , . . . ,  s,~_~) as required. Lemma 3 is proved. I 

PROPOSITION 3: For F = Z 2, Rn(F)  = C(2, n) is an (absolutely) irreducible 

Q-rational  variety. 

Proof." Let U C G L .  be the set of regular elements. Consider the following 

open subset X C C(2, n): 

X = {(x,y) �9 C(2, n)l x �9 U}. 

It clearly follows from Lemma 3 that X is irreducible and rational over Q. 

Repeating verbatim the arguments used in proving the Corollary in ~1, we see 

that any component C r C C(2, n) has to meet X. Then X n C'  is dense in C I, 

so the irreducible component Co C C(2, n) containing X contains, in fact, any 

other component implying the irreducibility of C(2, n). 

Proposition 3 is proved. | 

In his paper [G] Gerstenhaber observed that C(p, 2) and C(p, 3) are irreducible 

varieties for p arbitrary (for C(p, 2) this easily follows from Lemma 3 since for 

any ( p -  1) pairwise commuting matrices x l , . . . , X p - 1  C GL2 their common 

centralizer Z = Z ( x l , . . . ,  Xp-1) contains a regular element, this fact being false 

for all n , p  >> 3), however for any n > 4 and any p > n + 1 the variety C(p ,n)  

is reducible. This result prompted him to ask whether C(p, n) is irreducible for 

n > 4 and 2 < p < n + 1. In the preliminary version of this paper [R-Be-Ch] we 

gave a proof of the reducibility of C(p, n) for n > 4 and p _> 4. However later V. 

P. Platonov has drawn our attention to the paper of Guralnick [Gu] in which this 

result had already been obtained. Moreover, Guralnick proved that C(3, n) is 

reducible for n _> 32. With slight modification of his argument, one can improve 

the lower bound to n _> 29. The question on reducibility of C(3, n) for 4 < n < 29 

is currently open. 

In the remaining part of this section g > 1. For z E SL~ let W ( z )  = 

{(x,y) E GL~ • GLnl [x,y] = z} denote the corresponding commutator va- 

riety. It has been known for a long time that for an (infinite) field K any matrix 

in SLy(K)  is a commutator of two matrices from G L n ( K )  (cf. [T], note that 

actually a much sharper result was proved in [T], viz. any noncentral matrix in 

SLn(K)  is a commutator already in SLy(K)) .  This means that for z �9 SLy(K)  
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we always W ( z ) g  ~ O. The proposition below shows that  "generically" W(Z)K 

admits a nice geometric description. 

PROPOSITION 4: There exists a Q-defined Zariski open set U C SL,~ such that 

for any extension K / Q  and any point z c UK the commutator variety W(z)  is 

an (absolutely) irreducible K-rational variety of dimension (n 2 + 1). 

For any matr ix  a C M~ let fa(A) = det (AEn - a) be the characteristic 

polynomial of a, and let a I ( a )  . . . . .  0"n (a) be its coefficients so that  

fa(/~) : An .~ a l ( a ) , ~ n - 1  ..~ . . . ..~ an(a ) .  

Let us consider the following varieties: 

T : { ( y , z )  C GL~ • SL~ I a~(zy) : a~(y),i  = 1 , . . . , n -  1}, 

S •A n2-n • SLn, 

and introduce the following morphisms: 

r • (x,y) H[x,y], 

~: GL. • GLn --+ T, (x, y) ~-+ (y, [x, V]), 

~: T --. S, ((y~j),<~,j<~, z) ~ ( (yl j ) l<~<~,  z). 
2<j<_n 

To prove Proposition 4 we first prove the following weaker assertion. 

PROPOSITION 5: There exists Q-defined Zariski open sets V C (]Ln • GL,~, 

U c SL~ such that for any extension K /Q and any point z E UK the variety 

r  A V is irreducible and rational over K. 

(Note that  r  coincides with the commutator  variety W(z)).  

Proo~ To begin with, let us analyze the system determining T. It follows from 

the characteristic polynomial fa(A) of a matr ix  a = (aij) that  its coefficient at(a) 

at A n- t  is equal (up to sign) to the sum of all principal minors of a of order t. 

Expanding those of them which contain al l  along the first column, we obtain for 

at(a) an expression of the form: 

fit(a) = k Pstasl q- Qt 
s = l  

for some polynomials P~t, Qt c Q[aij]l<i<n �9 Then 
2<_j<n 

at(y) = k p s t y s l  + qt 
s~l  
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where Pst, qt are obtained from Pst, Qt replacing aij with yij, and 

n 

= ' ' ' 
PstYsl + qt 

! t ' stands for (i j)-entry of the matrix zy and Pst,qt are obtained from where yij 

' ' for j > 2 depends only on P~t, Qt by replacing aij with yij. Now, note that Yij 

the coefficients of z and Ylk with k _> 2. So, 

n 

( 3 )  a , ( z y )  = " " PstYsl + qt 
s-~. l 

for some P~t, q~' E Q[SLn][ylj] l_<i<n = Q[S]. Eventually, the system determining 
2<_j<n 

T reduces to a system of ( n - i )  linear equations for the entries of the first column 

of the matrix y: 
n 

(4) ~ CstYsl = dr, t = 1 , . . . , n  - 1 
s ~ l  

for some c~t, dt E Q[S]. Let us introduce a Q-defined Zariski open set To C T 

consisting of points (y, z) subject to the following conditions: 

(i) y is regular and semisimple; 

(ii) the rank of the matrix C(~r(y,z)) = (c~j(Tr(y,z))) l<~<n is (n - 1). 
l_<j<n-1 

Now, we need to make sure that To ~ ~. Let So C S denote the set of points 

(a, z) such that  rk C(a, z) = n - 1. We'll construct a specific point (a, z) E So 

which can be lifted to a point (y, z) E To. 

Take z = diag (p , . . . ,  p) where p is a primitive n-th root of unity. Then for 

any y we have at(zy) = ptat(y), so the system at(zy) = at(y) up to the constants 

coincides with the system 

(5) ai (y )=O,  i =  l , . . . , n - 1  

Now, let a = (alj)l<_i<_n E A n2-n be the point with coordinates alj = 5ij-1 
2<_j<_n 

(Kronecker delta). Put  yij = aij for i = 1 , . . . ,  n; j = 2 , . . . ,  n, and let Y11,..-, Ynl 

be indeterminates. We claim that the system (5) which is equivalent to the system 

(4) is then triangular: 

Y l l  = * 

(6) * Y l l  - -  Y21 : * 

�9 Yll + * Y 2 1 + ' " +  ( -1 )nyn_ l l  = * 
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and therefore has rank n - 1. To prove this, it suffices to show that  any principal 

minor of y containing Y11, and different from the minor in the left upper corner, 

is zero. But it is easy to see that  if we pick a minor lying in the rows and columns 

with numbers 1, 2 , . . . ,  l, m , . . . ,  r and m > l +  1 then its ( l+  1)-th column consists 

entirely of zeros, and our assertion is evident. Solving (6) for Y11,.--, Yn-l,1 we 

then make our choice of Ynl such that for y = (yi j) l<i , j<n we have det y ~ 0, 

which is possible since 

(7) det y = *Yll + "'" + *Y,,-1,1 + (-1) '~+lynl.  

By our construction the characteristic polynomial of y is fy (A) = ,V~+ (-1)'~ det y 

implying that y is regular and semisimple, and so (y, z) E To. Let us point out the 

following by-product of the argument above: We have shown that  So r 0; on the 

other hand, it follows from the Cramer's Rule for linear systems that  So C Im zc 

implying that 7r: T ~ S is dominant. 

Let $1 C S be a Q-defined Zaxiski open subset contained in ~r(To), T1 = 

~r-l(S1) N To, V0 = r  and, finally, Uo C SLn be any Q-defined Zariski 

open subset of r We axe going to show that  these Uo and Vo are as described 

in Proposition 5. 

Indeed, let K / Q  be a certain extension and z E (U0)/r Obviously, r coincides 

with the composite map p o zr o r where p: S --* SL,~ is the projection to the 

second component. So, if we put P = p - l ( z )  N $1, B = T: - I (P)  N T1 then 

r  N Vo = r  However, P is a K-defined open subset of the affine 

space, and 7r- l (P)  is a subvaxiety of the product A n x P defined by a linear 

system which satisfies the assumptions of Lemma 3 (the latter fact easily follows 

from our construction). So, by this lemma zr - l (P)  is an irreducible K-rational 

variety, and consequently, B is also. Now, for fixed (y, z) E B the fibre r  z) 

consists of (x, y) E GLn • GL,~ such that  

(8) x y  = ( z y ) x .  

By our construction, y is regular semisimple and the characteristic polynomials 

of y and zy  coincide, so, y and zy  are conjugate in GLn.  Moreover, the space of 

solutions of (8) in Mn has dimension n, i.e. the rank of the homogeneous linear 

system (8) is n 2 - n  for any point (y, z) E B. So, again r  is an open subset 

in a subvaxiety of the product Mn • B defined by a linear system satisfying 

Lemma 3, and therefore r  is irreducible and K-rational when B is. It also 
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follows from Lemma 3 that  d i m B  = d i m P  + (n - (n - 1)) = n 2 - n + 1 and 

d i m r  = d i m B  - (n 2 - (n 2 - n)) = n 2 + 1. Proposition 5 is proved. I 

Now, to complete the proof of Proposition 4 it remains to show that  there is a 

smaller open set U C Uo such that  for z �9 U the whole fibre r  is irreducible. 

Assume the contrary. Then 

C = {z �9 SL,~ I r  is reducible} 

is dense. Put  D = (GLn • GLn)\V0. If r  ~t SLn then for z E 

U0 A (SL~\ r  we would have r  C V0 and therefore r  = r  MV0 

would be irreducible by Proposition 5 which would contradict the density of C. 

So, we may (and we will) assume in addition that  r  = SL,~. 
d Let D = Ue=l De be a decomposition into irreducible components. Let I = 

{iI r = SLn}, J = { 1 , . . . ,  d} \ I .  For each i �9 I we consider 

r ----- r ]D, : Di  --+ S L n ,  

and we let Pe C r be an open (in SLy) subset such that  for any z �9 Pe we 

have 

(9) dim r (z) = dim D~ - dim SLn. 

Put  W = ( N e E I P e ) N ( S L n \ ( U j E j r  N Uo and pick z �9 W N C. Since 

r  N Vo is irreducible but r  is not, there must be an irreducible com- 

ponent E C r  which does not meet Vo, i.e. lies in D. Besides, by our 

construction E in fact belongs to UeeI De, so E C Di for some i �9 I .  Then 

d imr  > d i m E  > n 2 + 1 ---- (d im(GLn • G L , )  - d imSLn)  

implying by virtue of (10) that  

dim De = dim r (z) + dim SLn _> (n 2 + 1) + (n 2 - 1) = 2n 2 = d im(GLn • GLn)  

which is impossible. The proof of Proposition 4 is complete. I 

Remark:  I t  would be interesting to show that  the variety T introduced in the 

proof of Proposition 5 is irreducible. This would enable us to prove that  for any 

z in some Zariski open subset of SLn the variety T ( z )  = {y E GLn] ae(y) = 

a~(zy) , i  = 1 , . . . ,  n -  1} is irreducible, this fact being slightly sharper than our 

assertion on the irreducibility of the generic commutator  variety W ( z ) .  In fact, 
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our argument shows that one of the irreducible components of T is certainly 

Im r and if there is any other component it cannot contain a point (y, z) with 

regular semisimple y. On the other hand, there do exist cases when both T(z) 

and W(z) are reducible. 

Example: Let (101) 
z =  0 1 0 . 

0 0 1 

Then the equations for y = (y~j) to belong to T(z) are 

Y31 = 0 ,  Y21Y32 = 0 ,  

implying that T(z) has two irreducible components. Obviously, both components 

contain regular semisimple elements, and therefore can be lifted to irreducible 

components of W(z). 

Along with the full commutator variety W(z) (z E SL,~) one may consider its 

subvarieties: 

Wl(z) = W(z) n • W2(z) = W(z) n (sLn • sLn). 

Obviously, W2(z) arises in a natural way when one is considering representations 

of F into SL~ (cf. w To close this section, let us prove the following analog of 

Proposition 5 for W~(z) (i = 1, 2). 

PROPOSITION 6: There exists a Q-defined Zariski open set U' C SLn such that 

for any z E U' both varieties Wl(z) and W2(z) are irreducible. Besides, for any 

extension K / Q  and any z E U' K the variety Wl(z) is rational over K. 

Proofi Take for U' the intersection of U as constructed in Proposition 4 with 

the set of regular semisimple elements, and let z E U'. Since W(z) is irreducible 

and Wl(Z) is defined in W(z) by a single equation (the determinant of the second 

component of a point (x, y) E Wl(Z) should be one), any irreducible component 

of Wl(z) has dimension d = d imW(z)  - 1 = n 2. Consider the morphism 0: 

R x Wl(z) ~ W(z) where R is the one-dimensional torus of scalar matrices and 

O(r, (x,y)) = (x, yr). Clearly, for any irreducible component W' C Wl(Z) we 

have O(R, W') = W(z) implying that O(R', W') = W l ( z  ) for R' -- R M SLn. So, 

it suffices to show that in fact 0(R', W ') = W'. Assume the contrary. Since z is 

regular semisimple, Wl(Z) contains a point (x, y) with x regular semisimple (such 
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x can already be found in the maximal torus containing z), and to begin with we 

may pick W ~ to be a component containing such i x, y). Moreover, the set of such 

points being open and consequently dense in W ~, we may assume in addition that  

(x, y) does not belong to any other component and O(r, (x, y)) = (x, yr) • W' 
for some r E R'. Consider the set Z = (x,y(Z(x) N SLn)). Since x is regular 

semisimple, this set is an irreducible subset of Wl(Z) containing a point which 

belongs to W t but not to any other irreducible component, and therefore Z C W ~. 

However r E Z(x) M SLn and then (x, yr) �9 W' - -  a contradiction. To prove that  

W~(z) is irreducible we consider the imbedding W2(z) C Wl(z) and apply the 

same argument (note that  again W2(z) is defined in Wl(z) by a single equation). 

The proof Of K-rationality of Wl(z) for z �9 U~ is entirely analogous to 

the corresponding argument for W(z). Namely, we introduce a subvariety T ~ C 

GLn • SL,~ of points (y, z) satisfying the system: 

S o t (zy )  = t = 1 , . . . , n -  1 (10) 
I det (y) = 1 

and its projection ~r~: T ~ -+ S, 7r r = ;r IT, (~r, S are as above). Arguing as in 

the proof of Proposition 5, one can show that (10) is equivalent to a system of n 

linear equations for the entries of the first column of y: 

n 

(11)  c's ysl t =  1 , . . . ,n  
s = l  

for some c~st,d~ �9 Q[S]. In fact, the first ( n -  1) equations in (11) are the same as 

in (4), and the last one is the expansion of det y along the first column. Besides, 

using the same point (a, z) as in the proof of Proposition 5 one shows that a 

Q-defined Zariski open set Tg C T ~ of points (y, z) satisfying 

(i)' y is regular semisimple, 

(ii)' the rank of the matrix C'(~r'(y, z)) = (c~j(r'(y, Z)))l<_i<n is n, 
l<j<_n 

is non-empty (this easily follows from (6) and (7)). The rest of the argument 

repeats verbatim the concluding part of the proof of Proposition 5. I 

The question of whether W2(z) is K-rational for z �9 U~ is more delicate, and 

there are at least two obstructions to push through the above argument in this 

case. Namely, W2(z) can be viewed as a fibered space ~: W2(z) ~ B, ~((x, y)) = 

y, over 

S - - { y e S L n i a t ( z y ) = a t ( y ) ,  t =  l , . . . , n - 1 } .  
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We have shown above tha t  B is K-rat ional ,  however if b is a generic point  of 

B over K,  then the fibre O-l(b) contains no rat ional  points over K(b) even 

for n = 2. Besides, O-l(b) is a principal homogeneous space of the "generic" 
(1) 

norm torus RL/K(b)(Gm ) which is not rat ional  for n > 4 (cf. [C], IV], [Co-Sa D. 

This means tha t  a birat ional  parameter izat ion of W2(z) (if there is any) must  

essentially be a s imultaneous parameter iza t ion of bo th  components  x and y. This 

general observation is precisely consistent with what  we do in the proof  of the 

following: 

LEMMA 4: Let z = d i a g ( a , a - 1 ) ,  c~ E K*, c~ ~ - 1 .  Then 

W~(z) = { ( x , y )  e S L ~  • SL~I [x ,y ]  = z }  

is K-rational. 

Proo~ The proof  is purely computat ional .  By vir tue of Proposi t ion 3 we may  

(and we will) assume tha t  a ~ 1. The variety B of y-components  y = (Yij) of 

elements from W2(z) is defined by the system: 

tr(y) ,  i.e. ~ (1 - ol)yll + (1 - o ~ - 1 ) Y 2 2  = 0 ,  

1, I. YllY22 - Y12Y21 = 1. 
t r ( z y )  = 

det(y)  = 

Then  the functions 

(12) 
(~yl~l  - 1) 

Y22 = O~Yll, Y21 = 
Y12 

provide a birat ional  parameter iza t ion of B. Furthermore,  x-components  are 

defined from the sys tem 
] xy = (zy)x,  

(13) 
[ det x = 1. 

Computa t ions  show tha t  for fixed y = (Yij) all x = (xij) satisfying the first 

equation in (13) admit  the following parameter iza t ion (under the assumpt ion  

tha t  y12 r O) : 

(1 - a)yl lXl l  + Y21X12 y12xll  + (Y22  - ayll)x12 
x21 ~ , x22 ~-- 

aY12 olY12 

Taking into account  (12), we now can rewrite the second equat ion of (13) in the 

form: 

(14) Y12Xl12 2 _ (1 - a)yllY12XllX12 - (aye1 - 1 ) x ~ 2 -  ay22 = 0. 

Making a subst i tut ion u = y12x11, v = y11x12, we reduce (14) to 

(15)  u 2 - (1 - ~ ) u v  - ~ v  2 + x~2 - ~y~2  = o. 
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Letting now s = u - v, t = u + c~v (note that  since ~ ~ - 1  this substitution is 

non-degenerate), we can rewrite (15) as 

st + x~2 - ~Y122 = 0 

which evidently defines a rational variety. Substituting back we obtain a 

parameterizat ion of W2(z). The lemma is proved. | 

The case a = - 1  is, indeed, exceptional. It is easy to show (cf. IT]) that  z 

= diag ( - 1 , - 1 )  is not a commutator  in SL2(R). This means that  W2(z)R = 0, 

in particular W2(z) cannot be R-rational. However, if K is algebraically closed 

W2(z) is K-rat ional  even for z = d i a g ( - 1 , - 1 ) .  

If K is not algebraically closed we, unfortunately, do not know at the moment  

whether W2(z) is K-rat ional  for "generic" z c SL2(K).  What  we do know is 

that  for "generic" z C S L , ( K ) ,  n arbitrary, W2(z) is K-unirational (cf. w This 

result allows us, in particular, to give a very simple proof of the fact that  if K = C 

(or any algebraically closed field) then for any regular semisimple z E SL2(K)  the 

variety W2(z) is K-rat ional  (which, of course, also follows from Lemma 4). In- 

{ ( *  0)} 
deed, we may assume that  z is diagonal, and then the torus S -- 0 1 

acts on W2(z) by conjugation, the isotropy subgroup of a "generic" point being 

trivial. Consider the quotient X = W2(z)/S.  Then X is a K-unirat ional  surface, 

and so X is, in fact, rational since K is algebraically closed [Sh2]. Now using 

the fact that  S has trivial cohomology over any field, one easily derives from this 

K-rat ional i ty of W2(z). 

3. P r o o f  of  T h e o r e m  1 

Throughout this section let F = l"g be the group with 2g generators xl ,  Yl . . . .  , 

xg, yg and a single defining relation 

Ix1, y , ]  . . .  [xg,  = 1 

for some g > 1, Rn = Rn(F)  be the corresponding variety of n-dimensional 

representations. Put  P = (GL~) 2g-2 and let r R~ ~ P be the projection onto 

the first ( 2 g -  2) components. (Note the following "natural" interpretation of r in 

terms of representation varieties: elements Xl, Yl,. �9 xg_ 1, Ya-1 freely generate 

a subgroup F C F (cf. [L-S], Ch. 2), so P can be identified with Rn(F ) ,  and with 

this identification r becomes nothing but the restriction map R,,(F) --~ R~(F) . )  
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Since any element in SLn is a commutator  [T], one can see easily that  r is 

surjective and, in particular, dominant. The proof of the irreducibility of Rn 

rests on the fact that  r remains dominant if restricted to an arbi trary irreducible 

component of R , .  

PROPOSITION 7: For any irreducible component  V C R n  we have r  = P. 

We assume for a moment Proposition 7, and show how this implies the 
d irreducibility of R , .  Let Rn = Ui=l Vi be the decomposition into the union 

of irreducible components, and let d > 1. Define n: P -* SLn by the formula 

t~ ( ( X l , Y l , . . . , X g - - l , Y g - - 1 ) )  : [ X l , Y l ] ' ' ' [ X g - - I , Y g - - 1 ] "  

Also, let r  as in the previous section, be the commutator  map GL,~ x G L .  

S L ,  sending (x,y)  to Ix, y], and U C S L ,  be a Zariski open set such that  

the fibre ~b-l(z) is irreducible for any z �9 U (cf. Proposition 4). Put  Ui = 

V~ \ (Uj#i Vj) (i, j = 1 . . . . .  d) and U0 = n - l ( U ) .  Since P is irreducible, the inter- 

section r )A r is non-empty; let a be any of its points. Then the fibre 

Z = 0-1(a)  is isomorphic to the commutator  variety W ( n ( a ) ) ,  and therefore is 

irreducible. Hence Z C V~ o for a suitable i0 �9 {1 , . . .  ,d}. But a = r  = r 

for some u~ �9 U~ (i = 1, 2), so Ul, u2 E Z. However each of ul,  u2 lies on a single 

irreducible component of Rn implying VI = Vi0 = V2 - -  a contradiction. 

The proof of Proposition 7 is based on the analysis of the differential d,C. 

LEMMA 5: Let  v = ( x l , y l , . . .  , xg ,y9)  E R ~  be a point  such that  x 9 and yg are 

regular elements and dim(Z(xg) N Z ( y  9)) = 1 (i.e. Z (xg)  N Z(yg)  consists o f  scalar 

matrices  only). Then v is a s imple point  on I:t,~ and the m a p  d~r T v ( R n )  --~ 

Tr (P) is surjective. 

Proof'. For x ,y  �9 G L ,  let Tx,y denote the map Mn x M ,  ~ M ~ -- 

{X �9 Mnl t r (X)  = O} defined by the formula 

7x,y(X, Y) = ( y - l X y  - X )  + ( Y  - x - l Y x ) .  

LEMMA 6: I f  x,  y �9 GL~ are regular matrices  such that  Z ( x )  A Z (y )  consists o f  

scalar matrices  only, then Tx,y is surjective. 

Proof: Put  

V1 = { x - l X x  - X I X r Mn} , V2 = { y - l y y  _ Y[ Y �9 Mn},  
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and let f ( X ,  Y)  denote the non-degenerate bilinear form on Mn given by 

f ( X ,  Y)  = t r (XY).  

We have to prove that V1 + V2 = M ~ �9 Assume the contrary. Since both x and 

y are regular, we have dim V1 -- dim V2 = n 2 - n. Furthermore, 

d i m M  ~ = n ~ - 1 > dim(V1 + V2) = 2(n 2 - n) - dim(V1 n V2) 

implying 

(16) dim(V1 t3 V2) > n 2 - (2n - 1). 

Now, for A E Mn let fA denote the linear functional on Mn defined by 

fA (X)  ---- I ( X ,  A). 

Then each of the functionals f~o, f ~ , . . . , f ~ - i  vanishes on V1, so does each of 

fyo, fy, . . . ,  fy~-i on 1/2. This implies that all ( 2 n -  1) functionals 

(17) .f~o, A , . . . ,  f~,~-l, f y , . . . ,  fy~-, 

vanish on V1 N V2. Now it follows from (16) that the functionals in (17) cannot be 

linearly independent, and therefore, since f is non-degenerate, we conclude that  

the elements 
X 0, X , . . . ,  X n-1 , y , . . . ,  yn-1 

must be linearly dependent. In other words, there must be a relation of the form 

(18) ao '~ OLlX "~ " "  ~ o~n-1 xn-1  : ~lY "k " "  "b ~3n-ly n-1 

in which not all of a o , . . . , a n - l , ~ l , . . . , ~ , ~ - i  are equal to zero. Let a be the 

element given by either side of (18). Clearly, a commutes with both x and y, 

and to derive a contradiction, it remains to notice that a is not a scalar matrix, 

which easily follows from the fact that neither x nor y can satisfy a non-trivial 

polynomial equation of degree less than n. 

Lemma 6 is proved. | 

Let us proceed with the proof of Lemma 5. A direct computation with dual 

numbers shows that the differential d(,,y)r of the commutator map r GLn x 

GLn --* SL,~, (x, y) ~ [x, y], at point (x, y) is given by the formula 

(19) ( d ( x , y ) O ) ( X , Y )  = XyTx , y ( x - IX ,  y - I Y ) x - l y - 1  

= y - l v ) ( y x ) - I  
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(note that  the tangent space T~(~,y)(SLn) to SLn at r  = [x,y] can be 

identified with [x, y]M~ Using (19), it is easy to produce a formula for the 

differential of the multi-commutator map #: (GLn) 2g ~ SL~ 

, ( (Xl ,  y l , . . . ,  x~, y~)) = [~1, y l ] . . .  [~9, yg], 

at an arbitrary point v = (xl, Yl , . . . ,  xg, Yg): 

g 

d , p ( X 1 ,  Y 1 , . . . ,  Xg,  ]I9) = ~--~([xl, Yl]" "" [x~, yi] Z~ [xi+l, Yi+l]""" [xg, Yg]), 
i = l  

where Zi = (yixi)v~,y,  ( x ~ I X i ,  y (1Y i ) ( y i x~ ) - i  (of course, for i = g the product 

[X~+l,yi+l] " "  [Xg, yg] should be omitted). Since R~ = #- l (e) ,  for any v E Rn 

on Tv(R~) we identically have 

(20) d ,# (  X l ,  Y1, . . . , X9,  ]I9) = O. 

It should be noted that  though Rn is defined by a single matrix equation 

t t ( (x l ,  Y l , . . . ,  xg, yg)) = En , we cannot say in general that  Tv(Rn) is defined by 

(20) (cf. [Lu-M] for an example when the tangent space to the representation va- 

riety of a group is not defined by the differentials of relations defining the group). 

Nevertheless (20) does define Tv(Rn) in one special case we are going to describe. 

Since tt is surjective, it follows from the Dimension Theorem that  the dimension 

of any irreducible component of Rn is > 2gn 2 - (n 2 - 1) = (2g - 1)n 2 + 1; in 

particular, for any v C Rn we have dimT~(Rn) _> (2g - 1)n 2 + 1. Therefore, if 

the space defined by (20) has dimension (2g - 1)n 2 + 1, it must coincide with 

T . ( I ~ )  and the point v is simple. 

Now, let us rewrite (20) in the form 

~- ,yg(x~lXg, y[lyg) 

(21) - - ( y  x ~-l{~"~g-1 - -  ~ g g] ~A.-~i=l ( [ X g , y g ] - I  . . [ X i T l , Y i + l ] - l z i  

• [xi+l, y i+ l ] . . .  [x~, u~]))(ygxg) -1, 

and let 0(X1, Y1, . . . ,  Xg-1, Yg-1) denote the right-hand side of (21). Clearly, 

takes on values in M ~ Suppose Xg and Ya satisfy the assumptions made in the 

statement of Lemma 5. Then by Lemma 6, 7~ 9,y9 : Mn • Mn ~ M ~ is surjective, 

implying that  for any tuple (X1,  Y 1 , . . . ,  Xg -1 ,  Ya-1) E (Mn) 2g-2 one can find 
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a pair (X 9, Yg) ~ M s  • M s  which satisfies (21). This means that  if S is the 

space of solutions of (20), then dye (equal to the projection to the first 2g - 2 

components) maps S surjectively onto (Ms)  29-2 = Tr and it remains to 

be shown that  v is a simple point and S = T , (Rs ) .  To do this, it suffices to 

prove that  d i m s  = (2g - 1)n 2 + 1. 

We have 

dim S = dim(Mn) 29-2 + d imKer  T~g,y~ 

= ( 2 g -  2)n 2 + (2n 2 -  (n 2 - 1)) = ( 2 g -  1)n 2 + 1 

as required. Lemma 5 is proved. | 

LEMMA 7: Let  V be an irreducible component of Rn. I r e ( V )  ~ P, then 

dim(Z(xg) A Z(yg) ) > 1 for any v = (xl ,  Y l , . . . ,  xg, yg) e V. 

Proof: Put  

U1 = {v = ( x l , y l  . . . .  ,xg, yg) E V I Xg and yg are regular}, 

U2 = {v = ( x l , y l  . . . .  ,Xg, yg) e Y I d i m Z ( x g ) N  Z(yg) = 1}. 

It  is easy to see that  both  U1 and U2 are Zariski open. To begin with, let us show 

that Vl ~ 0. Let v ~ = (x ~ yO, . . . ,  x 0' yO) C V be a point which does not belong 

to any other irreducible component of Rn,  and let W ~ be an irreducible compo- 

nent of the commutator  variety W ( z - 1 ) ,  z = ix o, yO] ""[rx~ o 1 containing 

(x o, yO). Then (x ~ yO,. . .  ,Xg_Dyg_l  , o  o W ~ C Y; on the other hand, W ~ contains 

a point (xg,yg) with regular x 9 and yg (cf. Corollary in w hence our claim. If 

we assume that  U2 ~ 0 then V0 = U1 n U2 r 0. It  follows from Lemma 5 that  

any point v E Vo is simple on R s  implying, in particular, that  Tv(V)  = Tv(Rn),  

and dye: Tv(R~) = T , ( V )  ~ Tr is surjective. There exists v E V0 such 

that  r is a simple point on Z = r and then d i m Z  = dimTr > 

dim(d~r = dimT~(~)(P) = d imP,  so Z = P, contradicting the as- 

sumptions of the lemma. 

Therefore U2 = 0, and Lemma 7 is proved. | 

Now, we are going to show that  if for an irreducible component V C R~ we 

have r  r P,  then the condition on points of V provided by Lemma 7 forces 

the dimension of V to be less than an obvious lower bound, thereby completing 
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the proof of irreducibility of R~ (of course, in doing this we may (and we will) 

assume that n > 1). 

LEMMA 8: 

(i) d imV > (2g - 1)n 2 + 1; 

(ii) for any z E SLn the dimension of any irreducible component T of the 

commutator variety W(z )  is between (n 2 + 1) and (n 2 + n); 

(iii) the dimension of the variety 

Z = { ( x , y ) e  GL~ • GLn] dim(Z(x)  MZ(y))  > 1} 

is _< 2n 2 - 2(n - 1). 

Proof: (i) has already been proved in the course of the proof of Lemma 5. 

The lower bound in (ii) follows from the Dimension Theorem applied to the 

commutator map r To prove the upper bound, consider the map 6: T -+ GLn 

given by the projection (x ,y)  --+ x. It follows from the Corollary in w that 

5(T) contains a regular element x0. Then the fibre 6-1(xo) has dimension n, and 

therefore 

d i m T  _< dimS(T) + dim6-1(x0) < n 2 + n. 

(iii) We show first that there are finitely many non-scalar matrices x l , . . . ,  x~ E 

G L ,  with the following property: for an arbitrary non-scalar x E GL~ a suitable 

conjugate of Z(x)  is contained in one of Z(xi) ,  i = 1 , . . . ,  r. To do so, let us fix 

two elements a ~ ~ in the ground field and for each i, 1 < i <:n - 1, introduce 

an element 

x = diag( a , . . . , a  , ~ , . . . , / ~  ). 

i n - i  

Furthermore, let x n , . . . , x ~  be representatives of all non-identity unipotent 

conjugacy classes in GLn (it is well-known that there are finitely many such 

classes in an arbitrary reductive group in characteristic zero [Sp-St]; for GL~ 

this easily follows from the existence of the Jordan normal form). Now, let 

x E GL~ be an arbitrary non-scalar matrix, and x --xsx~ be its Jordan decom- 

position; then Z(x)  C Z(xs)  M Z(x~). If xu CE~ then x~ is conjugate to one of 

xi (n < i < r). Otherwise, x =x~ is conjugate to a non-scalar diagonal matrix d 

of the form 

d = diag( a l , . . . , a l � 9  . . . .  , a l , . . . , a ~ )  
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where all a j  are distinct, and then Z(d) C Z(xnl).  Now, we can write Z in the 

form 

z = 0 (.J h(z(x,)• Z(x ))h -1 
i=1 h6GLn 

SO, it suffices to show that for any x = xi the image of the morphism 

7: S = GLn • Z(x) • Z(x) -~ GLn • GL~, 7: (h, z~, z2) ~ (hz~h-*, hz2h-1), 

has dimension < 2n 2 - 2(n - 1). However, for fixed Zl, z2 6 Z(x), h 6 GL~  and 

an arbi t rary  t 6 Z(x) we have 

~(ht, t - l z l  t, t - lz2  t ) =  y(h, z,, z2) 

implying tha t  for any s 6 S we have d imy-* (~ ( s ) )  _> d i m Z ( x )  and therefore 

d i m I m ~  < d i m s  - d i m Z ( x )  = n 2 + d i m Z ( x ) .  

So, it remains to be shown tha t  dim Z(x)  < n 2 - 2 ( n - 1 ) .  I f x  = xi, 1 < i < n - l ,  

then Z(x) = GL~ • GL,~_~ and 

d i m Z ( x )  = i :  + (n - i)2 = n 2 _ 2i(n - i) 

= n 2 -  2 ( n -  1) + 2 ( i -  1 ) ( i -  ( n -  1)) < n 2 - 2 ( n -  1). 

If  x = x i , n  < i < r, then x is unipotent.  Pick an integer l > 0 such tha t  

h = (x - E,~) l # 0 but  (x - En) 1+1 = 0. Then  Z(x) C Z(h) and h 2 = 0, so it 

suffices to est imate dim Z(x). Clearly, h is conjugate to a Jordan  matr ix  of the 

form 

a = diag( j , . . . , j  , On-2~) 

r 

(01) 
for some r > 0, where j = 0 0 " 

A simple computa t ion  shows tha t  dim Z(a)  = n 2 - 2r(n - r) yielding the 

required est imation as above. Lemma 8 is proved. | 

I t  follows from Lemma 7 tha t  if r  # P ,  then V C (GL,~) 2g-2 x Z where Z 

is the variety introduced in Lemma 8 (iii). Consider the map  

#: V -* (GLn)  2g-2, 

/2: ( X l , Y i , . - . , X g - l , Y g - l , X g ,  yg) ~ (X l ,Y l , . . . ,Xg-2 ,  Yg-2,Xg, yg). 
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Clearly, I m p  C (GLn) 2g-4 •  and therefore by Lemma 8 (iii) we have 

d i m I m #  < ( 2 g -  4)n 2 + 2n 2 - 2 ( n -  1) = ( 2 g -  2)n 2 - 2 ( n -  1). 

On the other hand, the fibres of tt are the commutator varieties, so by Lemma 

8(ii) d i m # - l ( # ( v ) )  _< n 2 + n for any v E V and finally 

(22) d imV _~ ( 2 g -  2)n 2 - 2 ( n -  1) + n 2 + n = ( 2 g -  1)n 2 -  n + 2. 

Comparing (22) with Lemma 8(i) we get n _< 1 - -  a contradiction, proving 

irreducibility of R~. 

The assertion about dim R~ has already been (implicitly) proved above. 

Indeed, by Lemma 8 (i) d i m l ~  > (2g - 1)n 2 + 1; on the other hand, in 

proving Lemma 5 we saw that there are points v E 1 ~  such that d imTv(P~)  = 

(2g - 1)n 2 + 1 giving the equality d imR~ = (2g - 1)n 2 + 1. Of course, one can 

give another (direct and easy) proof of this fact just by noticing that  there exists 

a Zariski open subset Po C P such that d i m r  = n 2 + 1 for any p C P0 (for 

such a P0 one can take the U0 introduced right after the statement of Proposition 

7). 
Now it is easy to complete the proof of Theorem 1. Let us consider "generic" 

(n x n)-matrices xl,  Y l , . . . ,  Xg-1, Yg-1 and denote as K the field generated over 

Q by their entries. Let 

h -- [Xl, yl] """ [Xg-1, yg-1] E S L y ( K ) .  

Then h -1 is a generic point of SLn over Q and therefore h belongs to the Q- 

defined Zariski open set U C SL,~ specified in Proposition 5. By that proposition 

the commutator  variety W ( h  -1) is absolutely irreducible and rational over K. 

Since obviously Q(Rn) = K ( W ( h - 1 ) ) ,  we conclude that R.~ is rational over Q. 

Proof of Theorem 2: There is a dominant (in fact, surjective) Q-defined map 

a: R~(F) --~ X~(F) whose fibers are the closures of orbits of the natural action of 

GLn on I ~ ( F ) .  So, for the first assertion it remains only to verify the dimension 

formulas. If g = 1, the stabilizer in GLn of the generic point of R~(F) is a 

maximal torus implying that the generic orbit has dimension n 2 - n, hence our 

claim. Now, for g > 1 there always exists an" irreducible representation p E 

I ~ ( F ) .  (Indeed, SL2 is known to have an irreducible representation in every 

dimension; on the other hand, F is isomorphic to a Zariski dense subgroup of 
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SL2.) Then obviously the dimension of the orbit of p under GLn is n 2 - 1, 

yielding the desired formula. 

For the second assertion, consider the following commutative diagram 

(23) 

Rn( r )  ~ , x ~ ( r )  

01 1 
R n ( F )  r , X n ( F )  

in which r as before, is obtained by restricting representations to the subgroup 

F C F (freely) generated by Xl, Y l , . . . ,  Xg_ 1, Yg- 1; ~ is the morphism of the char- 

acter varieties corresponding to r and T is the canonical projection. Let ~ be the 

generic point of Xn(F)  over Q (so that K = Q(~) coincides with Q(Xn (F)))  and 

Z --= ~i-l(~) be the generic fiber of ~i. Then the field Q ( x n ( r ) )  can be identified 

with K ( Z ) .  Since Xn(F)  is rational over Q for n _< 4 (cf. [El], [F2] ) it remains 

to be proved that Z is K-rational. 

Let # E T-I(~) and M = r  (note that # and M are defined over some ex- 

tension of K).  We claim that ~ induces a bijection (and consequently, a /(-defined 

birational isomorphism) between M and Z. Indeed, since F has irreducible rep- 

resentations in every dimension, the representation corresponding to # is such. 

Then for any m E M the corresponding representation of F is also irreducible, 

and from a ( m l )  = a(m2) for m l , m 2  C M we may conclude that  ml  and m2 de- 

termine equivalent representations of F, i.e. m:  = (Int g ) m l  for some g E GLn.  

However both ml and m2 restrict to the same representation # of F implying that 

g belongs to the centralizer of # ,  so g is, in fact, a scalar matrix and ml = m2. 

This fact implies that Z is birationally/~-isomorphic to a commutator variety in 

GLn in the generic position and therefore is rational at least over /~ .  However 

what we really want is the rationality over K, and then to overcome the fact that 

# is no t  K-defined we have to replace GL~ by its suitable Galois twist G over 

K. 

Since ~ is defined over K, for any 0 e Gal ( /~ /K)  we have ~-(8(#)) = 7(p) ,  

hence 0(#)  = co(p)  for a suitable uniquely defined ae E PSLn,  since # is irre- 

ducible. The family a = {he} determines a cocycle in ZI (K,  PSL~)  and we can 

introduce the corresponding twisted group G -- ~:~Ln. Then we can think of 

the representation variety a ( r ,  G) (resp., R(F ,  G)) as the Galois twist of I ~ ( F )  
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(resp., Rn(F) )  by a, and consider the diagram 

R ( F , G )  ~ �9 X ( F , G )  = Xn(F)  

R(F, G) § , X(F, G) = Xn(F) 

which is obtained by twisting (23) (note that twisting by inner automorphisms 

we do not change the corresponding character varieties). Then # corresponds 

to a K-defined point (to be denoted by the same letter) in +-1(~), and the 

same argument as above shows that the fibre 5-1(~) = ~-1(~) is birationally 

K-isomorphic to the fibre ~-1(#).  On the other hand, obviously, ~-1(#)  equals 

the following commutator variety in G in the generic position: 

W(z) = {(x, y) �9 a • al  [x, y] = z} 

where z = ([xl,yl] " "  [Xg-l,Yg-1]) -1 i f#  = ( x l , Y l , . . .  , xg -x ,yg-1) ,x i , y i  �9 G. It 

is well-known (cf., for example, [P1-R]) that G = G L  I(D) for some simple central 

algebra D over K of dimension n 2, so it remains to be proven that  for n _< 3 

there exists a Zariski K-open set U C SLI(D)  with the following property: for 

any extension L / K  and any z �9 UL the commutator variety W(z) is L-rational. 

To this end, let us introduce the functions 5 1 , . . . , 5 n  on D which are similar 

to the functions a l , . . . , a n  on Mn used in w and for z �9 SLI(D)  define the 

corresponding variety 

T(z)  = {y �9 G] 5i(y) = 5 i (zy) , i  = 1 , . . . , n -  1}. 

It is well known that &l , . - . ,Sn  are regular functions on D, satisfying the 

following: 

(i) 5i(d) is given by a homogeneous K-defined polynomial of degree i in the 

coefficients of d with respect to a basis of D over K; 

(ii) if C is an algebraically closed field containing K and X: D | C ---* Mn(C)  

is an isomorphism of C-algebras (which always exists, cf. [P]), then #i(d) = 

a~(~((d)) for any d C D. 

We claim that if n _ 3 then for "generic" z the variety T(z) is rational over 

the field of definition. Indeed, if n = 2 then T(z) is defined by a single linear 

condition, and our claim follows immediately. For n = 3 we have two conditions, 

one being linear and another quadratic in the coefficients of y. Solving the linear 
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equation for one of the variables and plugging this expression into the quadratic 

equation, we see that ~b(z) is actually a quadric. Therefore, to establish its 

rationality it suffices to find on it a rational point (over L, if z �9 SLI(D)L ). 

Let M be a maximal subfield in D @g L, and C be an algebraically closed field 

containing M. Since M splits D @K L, an isomorphism X in (ii) can be found 

over M. Then ~b(z) becomes M-isomorphic to 

T(x(z))  = {y �9 GLnl ai(y) = ai(x(z)y)},  

and since by virtue of Thompson's theorem T(X(z)) M ~ ~ (cf. w we may con- 

clude that  T(Z)M ~ ~. This means that the quadratic equation defining T(z) has 

a rational point over an extension M of L of degree 3, but then by Springer's 

theorem [La] it must have a point over L, proving our claim. 

The rest of the proof coincides with the final part in the proof of Proposition 

6. Namely, for fixed z we may consider the natural map r l/V(z) --* ~b(z), 

r (x,y) ~-~ y. Then the fibre r  equals the variety of x's in G satisfying 

xy -- (zy)x which amounts to a system of linear equations for the coefficients 

of x with respect to a basis of D over K. In view of Lemma 3 this implies 

rationality of r  for z (resp., y) in a Zariski open subset of SLI(D) (resp., 

~b(z)). Applying this to the fibre of r over the generic point of ~b(z) (note that as 

(implicitly) proved above, 2b(z) is irreducible), we obtain the rationality of l/V(z). 

Theorem 2 is proved. | 

Remark: In JR-Be] we announced a stronger statement than our Theorem 2, viz., 

we claimed that  Xn(Fg) is stably isomorphic to Xn(F).  However, in our original 

proof (sketched in [R-Be]) we overlooked that the fibre 5-1(~) is isomorphic to the 

corresponding fibre of r only over some field extension. In fact, the examples (due 

to Kursov [K]) of division algebras D having an element in the derived subgroup 

[D*, D*] which is not a single commutator suggest that  in general 5-1(~) may 

not even have rational points. 

4. Representations in SLn 

The goal of this section is to prove the following (partial) analog of Theorem 1 

for the representation variety R(F9, SLn) of F 9 into SLn. 
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R(Fg, SLn) is an (absolutely) irreducible Q-unirational variety of 

f ( 2 g - 1 ) ( n  2 - 1 )  i fg > 1, 
dimR(Fg,  SLn) 

n 2 + n - 2  Jig = 1. 

The case g = 1 is simple. Indeed, as we mentioned in w Richardson [Ri] 

established the irreducibility of R(Fg, G) = R(Z 2, G) for an arbitrary reductive G 

(in fact, for G = SLn this can be easily deduced from the irreducibility of Rn(Z 2) 

by imitating the argument used in the proof of Proposition 6). Applying the 

Dimension Theorem to the projection R(Z ~, G) ~ G, (x, y) H x, we immediately 

find the dimension of R(Z 2, G) to be dim G + rk G. Now, let T C G be a maximal 

torus defined over K, the field of definition of G. Then the dimension argument 

shows that the morphism t~: G x T x T --, R(Z 2, G) defined by 

O(g, tl, t2) = (gtlg -1, gt2g -1) 

is dominant. Therefore, since G and T are K-unirational [Bo], so is R(Z 2, G). 

In the rest of this section g > 1. One can check that all the arguments from 

the previous section can be carried over to our situation provided we have the 

following analog of Proposition 4. 

PROPOSITION 8: There exists a Q-defined Zariski open subset U ~ C SL,~ such 

that for any extension K/Q and any point z E U~K the variety W~(z) = {(x, y) E 

$L~ x SLn[ [x, y] = z} is (absolutely) irreducible and unirational over K. 

(Note that  the irreducibility of the "generic" commutator variety in SL~ has 

already been proved in Proposition 6.) 

To begin with, let us outline the main idea of the proof. It was proved by 

Thompson [T] (cf. also Proposition 9 below) that  almost any z E SLy(K)  (in 

fact, any z which does not belong to the centre) is a commutator of two matrices 

x, y E SLy(K)  i.e. W'(z)g ~ ~. Our proof of Proposition 8 is based on the fact 

that "generically" (in the sense to be specified later) any other point of W'(z) can 

be obtained from (x, y) by means of a natural procedure which can be interpreted 

as a motion along some unirational subvariety. For technical reasons, it is more 

convenient to define and analyze this procedure first for the elements in GL~. 

We will call two pairs a~ = (x~, y~) E GL,~ x GL,~ (i --- 1, 2) equ iva len t  if 

[xl,yl] = [x2,Y2] and either Xl = x2 or Yl = Y2. This means that  as is obtainable 
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from al by a single s t a n d a r d  t r a n s f o r m a t i o n  by which we mean multiplication 

of either of the components by an element from the centralizer of the other. Now, 

let R C GLn be the set of regular semi-simple elements. Then a, b E GLn • GLn 

(resp., a, b E R x R) are said to be cha in  equ iva l en t  (resp., s t r i c t l y  cha in  

equ iva len t )  if there are elements Cl , . . . , ck  in GLn x GL~ (resp., in R • R) 

such that cl = a, Ck = b and for any i = 1 , . . . ,  k - 1 the elements ci and ci+l 

are equivalent. So, chain equivalent pairs are those obtainable from one another 

by a sequence of standard transformations. 

equivalent (resp., strictly chain equivalent) is 

It follows from our definitions that any two 

Also, the relation of being chain 

an equivalence relation. 

chain equivalent pairs ai = ( xi,  Yi ) 

(i = 1, 2) have the same commutator: [Xl, Yl] = [x2, Y2]. Let us put the question 

the other way around: does the fact that [Xl, Yl] = [x2, y2] imply that al and a2 

are chain equivalent? We are going to show that this is, indeed, true "generically", 

i.e. on a Zariski open set, and this fact will play a crucial role in the proof of 

Proposition 8. 

THEOREM 4: There  ex is ts  a Q-def ined  Zariski  open  set  V C R 4 wi th  the  fol lowing 

proper ty:  any  ai = (x~,yi)  E R 2 ( i  = 1,2), such tha t  [xl,Yl] = [x2, Y2] and  

(xl, Yl, x2, Y2) E V, are s t r ic t ly  chain equivalent .  

Proof." Fix an integer t _> 0 and consider a subvariety 

X t  C R x R x (GLn) 2t 

consisting of points (x, y, a l , . . . ,  at, b l , . . . ,  bt) subject to the following conditions: 

[x, b l ] =  l ,  [ x a l . . . a { , b ~ + l ] =  l f o r i = l  . . . . .  t - l ,  

[ai, y b l " ' b i ]  = l and x a l . . . a i ,  y b l " " b i  E R 

for i = 1 , . . . , t .  Furthermore, define a morphism Ct: Xt --~ R 4 by the formula 

Ct: (x,  y, a l , . . . ,  at, b l , . . . ,  bt) ~ (x,  y, x a l . . . a t ,  y b l ' "  bt). It follows from this 

definition that  if (Xl, Yl, x2, Y2) e Im Ct, then (Xl, Yl) can be linked with (x2, Y2) 

by the following chain of elements: 

. . . , ( x a l . . . a i ,  y b l . . . b i ) ,  ( x a l . . . a i , y b l - . . b i b { + l ) ,  

(24) 
( x a l  " . aiai  + l , ybl  " " bibi+ l ), . . . 

Moreover, all pairs in (24) belong to R x R and each next pair is obtained from 

the previous one by a standard transformation, i.e. pairs next to each other are 
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equivalent, implying that  (xl,  yl) and (x2, Y2) are strictly chain equivalent (in 

particular, [Xl, Yl] = Ix2, Y2])�9 Put  

Y = {(Xl,  Yl, x2, Y2) e n41 [Xl, Yl] = [x2, Y2]}. 

Then Ct(Xt) C Y, and to prove our Theorem it suffices to show that  Ct(Xt) is 

dense in Y, for some t. 

LEMMA 9: X t and Y are irreducible varieties o[ dimension 2(n2 +nt ) and 3n2+ 1, 

respectively. 

Proof: It  is easily seen that  the map 

(xl,  Yl, x2, Y2) ~ (xl, yl, Y2, x2) 

identifies Y with an open subset of R~(F2), so the assertion regarding Y follows 

from Theorem 1. The variety Xt  can be handled by induction on t. The case 

t = 0 is obvious. To analyse the transition from Xt to Xt+l, let us introduce an 

intermediate variety 

X~+ 1 = {(x ,y ,  a l , . . . , a t , b l , . . � 9  bt+l) �9 Xt  • GLnl 

[xal ' "a t ,b t+l]  = 1 and ybl . . 'b tb t+l  �9 R}. 

Since by our construction x a l . . . a t  �9 R, the equation 

b t+l (xa l . . . a t )  = (xa l . . .a t )b t+l  

for bt+l amounts to a linear system for its coefficients, of rank n 2 - -  n .  S o ,  it 

follows from Lemma 3 that  X~+ 1 is irreducible of dimension dim Xt  + n. To pass 

from X~+ 1 to Xt+l we need to add another component at+l satisfying 

at+l(ybl""bt+l)  = (yb l ' "b t+l )a t+l  , x a l . . . a t a t + l  �9 R, 

and repeating the same argument,  we conclude that  Xt+l is irreducible of 

dimension 

�9 ! 
dimXt+~ = d~mXt+ 1 + n = d imXt  + 2n = 2(n: + n(t + 1)). 

Lemma 9 is proved�9 | 

Now, to prove Theorem 4, it suffices to pick t such that  for some d ~ Y we 

have 

dimr _< d imXt  - d i m Y  = 2nt - n 2 - 1. 
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For fixed (u, v) E R • R let 

Zt(u ,  v) = X t  N ((u, v) x (GLn)2t ) .  

LEMMA 10: 

(i) Zt(u,  v) is an irreducible variety of  dimension 2nt; 

(ii) 

Isr. J. Math. 

there exists a pair (uo, Vo) E R x R such that  for some t we have 

d imCt(Zt (uo ,  vo)) >_ n 2 + 1. 

Using L e m m a  10 it is easy to complete  the proof  of Theo rem 4. Indeed, for any 

d E Ct(Zt(uo, vo)) we have r  C Zt(uo, vo), so using the dimension values 

f rom L e m m a  10 we conclude t ha t  there must  be  a point  d E Ct(Zt(uo, vo)) such 

tha t  

d i m r  = dim Zt(uo, vo ) - d im Ct ( Zt ( uo, vo ) ) <_ 2tn - n 2 - 1, 

as required. 

Proof  of  L e m m a  10: (i) is proved in exact ly  the same fashion as L e m m a  9. To 

prove (ii), let us take 

0 0 ... 0 1 

1 0 ... 0 0 

u0 = d i a g ( 1 , p , . . . , p ' ~ - l ) ,  Vo = 0 1 0 0 , 

".o 

0 0 ... 1 0 

where p is a pr imit ive  n - th  root  of unity. I t  is easy to check tha t  uo, vo E R 

and the c o m m u t a t o r  [uo, v0] equals ~ = d i a g ( p , . . . ,  p). Compos ing  Ct wi th  the  

project ion Y ~ G L n  x GL,~ onto the second pair  of components ,  we ob ta in  a 

morph i sm 

pc: Z t (u ,  v) --, W ( z ) ,  z = [u, 

and we need to prove tha t  for some t 

dimpt (Z t (uo ,  vo)) >_ n 2 + 1. 

I t  easily follows f rom our definitions tha t  

(25) . . .  C pt( Zt(uo, Vo) ) C Pt+l( Zt+l (uo, Vo) ) C . . . 
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Pick t such that the dimension of L = pt(Zt(uo, vo)) is maximal possible. Then 

by (25), ps(Zs(uo,vo)) C L for any s. However the union Us>o ps(Z~(uo, vo)) 
coincides with the equivalence class E = [(Uo, vo)] with respect to the strict 

chain equivalence. So, all that  remains to be proven is that  dim E _> n 2 q- 1. 

Since f belongs to the center of GLn,  this group acts on W(f )  by conjugation. 

Besides, for any point (u, v) E W(~) and any g E GL~ we obviously have g[u, v] = 
[(gug -1, gvg-1)]. This implies, in particular, that E is invariant under Z(uo) and 

Z(vo), and therefore also under the subgroup H generated by them. 

LEMMA 11: H = GL~. 

Proof." Clearly, Z(uo) coincides with the diagonal torus S, so H is a connected 

subgroup of (3Ln (as generated by two connected subgroups, cf. [Bo]) and con- 

tains S and vo. Let �9 be the set of roots of H with respect to S. Each a E �9 can 

be identified with a pair (i, j )  where i and j are distinct residue classes modn.  

Direct computation shows that  

Vo d i ag ( s l , . . . ,  s,~ )Vo 1 = diag(sn, s l , . . . , S n - - 1 ) ,  

therefore v0 acts on r as follows: vo(i,j) = (i + 1,j  + 1). Besides, from the 

commutator relations we derive that if (i,j), (j, k) E �9 and i # k then (i, k) E (I). 

Let r be the least positive integer such that  (0, r) E r 

Using Euclid's algorithm it is easy to show that  r divides n and for any (i, j )  E 

the difference i - j is divisible by r. Then any root a E (I) restricts trivially to 

the r-dimensional subtorus consisting of matrices of the form 

diag(tl, t 2 , . . . ,  tr, tl, t 2 , . . . ,  t~, tl, t 2 , . . . ,  t~), 

consequently, these matrices belong to the center of H. 

However, a diagonal matrix which commutes with Vo is necessarily a scalar 

one, forcing r = 1. So, (0,1) E ~, easily implying that (i ,j)  E (]) for any i # j ,  

hence H = GLn.  Lemma 11 is proved. I 

It follows from Lemma 11 that  the image of the morphism 

~f: Gm )< Gm • GL~ ~ GL,~ x GL~, (a,/3, h) ~ (h(auo)h -1, h(~vo)h-1), 

is contained in E,  and to complete the proof we need to show only that  for any 

1 = (a,~3, h) we have d imh- i (6( l ) )  = 1. Let 11 = (al , t31,hl)  E 5-1(6(1)) and 
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M be an irreducible component of ~-1(6(I)) containing 11. Since u~ = v~ = E~, 

we have c~] ~ = c~ n,/3~ = 13 ~. So, there are only finitely many possibilities for 

~x,/31 and therefore for any l' = (cJ,13',h t) E M we have c~' = ~1,/3' = /31. 

Then h-~Xh ' E Z(uo) N Z(vo) = (scalar matrices), and d i m M  = 1, as required. 

Theorem 4 is proved. | 

The fact (actually) proved in Theorem 4 can be reformulated as follows: there 

exist an integer t > 0 and Zariski open set C C R • R such that  for (u, v) E C 

the morphism pt: Zt(u,v)  ---* W(z), z = [u,v], is dominant. It  means that  almost 

all the points on W(z)  are strictly chain equivalent. It  is natural  to expect 

the sharper result that  for any z in some Zariski open subset of SL~ all points 

(x, y) E W(z)  with regular x and y are (strictly) chain equivalent (one can show 

that  it is, indeed, the case for z = ~). 

Let us point out one obstruction to the surjectivity of pt: it is easy to see that  

for any (u',v') �9 pt(Zt(u,v))  we have Z(u) N Z(v) = Z(u') ~ Z(v') ;  so points 

(Ul,Vl),(U2, V2) �9 W(z) such that  Z(Ul)(1 Z(Vl) ~ Z(u2)N Z(V2) cannot be 

strictly chain equivalent (one can give examples when d i m Z ( u l ) M  Z(vx) = 1 

and d imZ(u2)  M Z(v2) > 1). We would like to put forward a conjecture that  

there should not be other obstructions to Pt being dominant, viz. There exists 

an integer t > 0 such that  for any (u, v) �9 R • R with the properties: dim Z(u) N 

Z(v) = 1 and the commutator  variety W(z),  z = [u, v], is irreducible of dimension 

n ~ + 1, the morphism pt: Zt(u, v) ---* W(z)  should be dominant. One can show 

that  if z �9 R has eigenvalues ~ 1 , . . . ,  An and none of the products Ai~ "" �9 Ai~ is 1 

(note that  this condition describes a Zariski open set) then for any (u, v) �9 W(z)  

we already have dim Z(u) M Z(v) = 1. Now, assuming our conjecture and picking 

z such that  in addition W(z)  is irreducible of dimension n 2 + 1, for any two 

regular points (ui, vi) �9 W(z)  (i = 1, 2) we would have 

pt( Z,(ul, vx) ) n pt( z,(u2, v2) ) # 

implying strict chain equivalence of (ul, Vl) and (u2, v2). 

We conclude this section with the proof of Proposition 8. Put  R ~ = R ;q SL,~, 

and for (u, v) E R ~ x R' let 

Z~(u, v) = Zt(u, v) M ((u, v) x (SL~)2'). 

Clearly, the restriction of Pt to Z~(u,v) defines a morphism p~: Z~(u,v) 



Vol. 93, 1996 REPRESENTATION VARIETIES 67 

W'( z )  = W ( z )  A (SLn x SLn), and p~ is dominant if pt is such (and W'(z )  

is irreducible). 

LEMMA 12: 

(i) For any t >_ O, any extension K / Q  and any (u, v) �9 R~K • R~K the variety 

Z~(u, v) is irreducible and K-unirational. 

(ii) There exist an integer t > 0 and a Q-defined Zariski open set C' c R' • R' 

such that for (u, v) �9 C' the morphism p~: Z~(u, v) --* W' ( z )  is dominant. 

Proof." (ii) immediately follows from the discussion above. Let us prove (i) 

by induction on t. The case t = 0 is obvious while the transition from Z[(u, v) 

to Z~+l(u,v ) results in adding another pair of components. Let us introduce 

an intermediate variety M[+x(U , v) obtained by adding just one component and 

show that at each step, i.e. going from Z~ to M[+ 1 and from M[+ 1 to Z~+I, we 

end up with an irreducible K-unirational variety. So, let 

Mt+l(U,V) = { ( u , v , a , , . . . , a t , b l , . . . , b t ,  bt+l) �9 Z~(u,v) x GL~ I 

[ u a l ' "  at, bt+l] = 1, Vbl . . .  btbt+l �9 R} 

and M~+ 1 be the subvariety of Mt+l defined by the condition bt+l �9 SLn. Then 

as in the proof of Lemma 9, we obtain from Lemma 3 that Mt+l is irreducible. 

After that the irreducibility of M~+ 1 can be proved by repeating the argument 

used in Proposition 6. Finally, if w = (u, v, ~ , . . . ,  a t , b1 , . . . ,  bt) is a generic 

point of Z~(u,v) over K and L = K(w)  then K(M~+l(U,V)) can be identified 

with L(C) where C is a L-torus equal to ZSL~ ( u ~ l - ' '  at). However, any torus is 

unirational over the field of definition [Bo] and L is unirational over K by the 

induction hypotheses implying K-unirationality of M~+ 1. The transition from 

M~+ 1 to Z~+ 1 is handled in exactly the same way. Lemma 12 is proved. | 

Lemma 12 implies that for any (u, v) �9 C~ the corresponding commutator va- 

riety W'(z ) ,  z = [u, v], is K-unirational. So, to complete the proof of Proposition 

8 we need to show that there exists a Q-defined Zariski open set V C SLn such 

that,  for any z �9 VK, W ' ( z )  contains a point (u, v) �9 C~: . This follows from the 

statement below which is interesting in its own right. 

PROPOSITION 9: Let D C SLn x SLn be a Q-defined Zariski open set. Then 

there exists a Q-defined rational map 0: SL~ --~ SL~ x SLn such that for any z 

from the domain of O we have O(z) �9 W ' ( z )  and Im 0 n D # 0. 
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Proof: Let T C SLn be a diagonal torus and for a = d i a g ( a l , . . . ,  an) let (ol ) 
a z2,...,zn x2 a2 0 

g 

0 ". 

Xn an 

CLAIM: There exists a Zariski Q-open set To c T such that  for a �9 To and any 

z in some (non-empty)  Zariski open subset Bo C SLn the sys tem 

(26) a i ( z a ( x 2 , . . . , x n ) ) = a i ( a ( x 2  . . . .  ,xn),  i = l , . . . , n - 1  

(where ai as in w is the coefficient ofA ~-~ in the characteristic polynomial)  has 

a unique solution (x2 (z ) , . . . ,  xn(z ) ) .  

Indeed, it follows from w that  (26) amounts to a linear system for x2, . . . ,  x~: 

A12x2 -4- . . .  q- Al~x,~ = A1 
(27) . . . . . . . . . . . . . . . . . .  

An-12x2 q- "-" -b A~_l~Xn = A n - x  

in which Aij  = Ai j (a ,  z), Ai = A~(a, z). Now, direct computat ions show that  for 

z = zo where 
1 . . .  1 / 

zo = "'. 0 

0 1 

we have A12 . . . . .  AI,~ = 1 and for i > 1 

Aij  = E akl �9 �9 "ak~. 
2<_kl (k~_ 1 <n 

k.~j 

Taking a2 = 1, a3 --- A , . . . ,  an = •n-2 it is easy to ascertain that  the determinant  

d ( a 2 , . . . , a ~ )  of the matr ix  of (27) for z = Zo is not identically zero�9 Let To 

be defined by the condition d(a2, . . . ,a ,~)  # 0. Then for Bo corresponding to 

( a l , . . . ,  an) �9 To one can take the set of z such that  the matr ix  of (27) is non- 

degenerate�9 (Note that  by our construction Zo �9 Bo, so Bo is non-empty, and 

moreover, Bo is Q-defined if a �9 TQ.) 

Applying conjugation, if necessary, we may assume that  the projection 

pr2(D) of D onto the second component meets T, so we can pick a regular a E 

(To)Q N pr2(D ). Furthermore, we can find non-zero x ~  x ~ �9 Q, bo �9 SLn(Q) 
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such that (bo, ao = a ( x ~ 1 7 6  e D and [bo, ao] �9 Bo �9 Since C = Zsr.,(ao) 

is a Q-split torus, the morphism SLn ~, S L n / C  admits a Q-defined rational 

section, i.e. there is a Q-defined subvariety F C SLn such that  a lF is a birational 

isomorphism onto SLn /C ,  and we may assume that  bo �9 F. Now taking into 

account that  

diag(1, x 2 , . . . ,  xn) ao diag(1, x 2 , . . . ,  xn) -1 = a(x~ X~ 

we conclude from the above that  the morphism 

p: F x G ~  -1 --, SLn 

defined by 

p: (f ,  x 2 , . . . ,  x~) ~ diag(1, x 2 , . . . ,  x~) [f, ao] diag(1, x 2 , . . . ,  x~) -1 

is a birational isomorphism. Let its inverse p - l :  SLn --, F •  -1 have the 

following components: 

p - l ( z )  = (po(z), p2(z) , . . . ,  pn(z)). 

Put  #(z) = diag (1, p2(z) , . . . ,p~(z) ) .  Then the required map 0: SLn 

SLn • SL~ can be defined as follows: 

O(Z) = (I~(Z)po(Z)#(Z) -1, I~(Z)ao#(z)-l). 

Proposition 9 is proved. II 
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